

One-Step Synthesis of Sulfonamides from N-Tosylhydrazones

Andy S. Tsai,* John M. Curto, Benjamin N. Rocke, Anne-Marie R. Dechert-Schmitt, Gajendrasingh K. Ingle, and Vincent Mascitti

Pfizer Worldwide Medicinal Chemistry, Eastern Point Road, Groton, Connecticut 06340, United States

Supporting Information

NNHTs + HN
$$\stackrel{R^4}{R^3}$$
 DABSO (0.55 equiv) $\stackrel{Q}{R^1}$ $\stackrel{Q}{R^2}$ $\stackrel{Q}{R^3}$ $\stackrel{Q}{R^4}$ $\stackrel{Q}{R^4$

ABSTRACT: The first described reaction between N-tosylhydrazone and SO₂ is reported to provide alkyl sulfonamides in the presence of various amines. In this procedurally simple method, hydrazones of both unsaturated aldehydes and ketones proceed in moderate to excellent yields. Primary and secondary aliphatic amines are accommodated in this reaction, which provides a novel route to sulfonamides.

C ulfonamides have become important structural elements in drug design since the development of sulfa antibiotics in the 1930s. Although the traditional synthesis of sulfonamides from sulfonyl chlorides and amines is straightforward, obtaining the necessary sulfonyl chloride can be cumbersome. Classical methods toward sulfonyl chlorides typically require the oxidation and/or chlorination of less commonly encountered sulfides/thiols/sulfonates or harsh electrophilic aromatic substitution with SO₃. Recently, various groups have reported more streamlined syntheses of aryl sulfonamides through a onepot combination of an organic fragment, sulfur source, and amine.³ The organic fragments have ranged from boronic acids (Buchwald, Pfizer/Toste, and Willis), 4a-c to anilines (Malet-Sanz), 4d aryl halides (Pfizer), 4e and aryl Grignards (Willis and Barrett)4f-h (Scheme 1).4 These advances have provided medicinal chemists increased flexibility for the introduction of sulfonamides.

While previous one-pot reactions have focused on aryl sulfonamides, we sought a method to access alkyl variants.⁵ With this goal in mind, we were particularly attracted to decades-old reports that showed alkyl diazo species react with SO₂ to purportedly generate sulfenes which undergo further reaction with amines to yield sulfonamides. While a topic of mechanistic study, these reports were not further explored for their synthetic value, likely due to the fact that diazo compounds are difficult to obtain and exhibit explosive potential. We sought to elaborate this chemistry through in situ generation of diazo compounds from N-tosylhydrazones which are stable and straightforward to obtain in one step from aldehydes/ketones. Thus, we endeavored to develop a conversion of N-tosylhydrazones to sulfonamides through reaction with sulfur dioxide and an amine.8 To our knowledge, such a transformation would be the first report of a reaction between N-tosylhydrazones and sulfur dioxide.

Scheme 1. Summary of One Pot Sulfonamide Syntheses

Sulfonamides from Boronic acids (Buchwald, Pfizer/Toste, and Willis)

$$Ar - B(OH)_2 \xrightarrow{O}_{PhO} SCI \xrightarrow{Pd (cat.)} O \xrightarrow{O}_{Ar} SCI \xrightarrow{R^1R^2NH} O \xrightarrow{O}_{NR^1R} O$$

$$Ar - B(OH)_2 \xrightarrow{K_2S_2O_5, Au (cat.)} O \xrightarrow{O}_{Or DABSO, Pd (cat.)} O \xrightarrow{Ar} SO$$

$$Ar - B(OH)_2 \xrightarrow{Or DABSO, Pd (cat.)} O \xrightarrow{Ar} SO$$

$$Ar - B(OH)_2 \xrightarrow{Or DABSO, Pd (cat.)} O \xrightarrow{Ar} SO$$

Sulfonamides from Anilines via diazotization (Malet-Sanz)

Sulfonamides from Aryl halides (Pfizer)

Sulfonamides from Aryl Grignards (Willis and Barrett)

Sulfonamides from Tosyl Hydrazones (This work)

NNHTs DABSO,
$$R^3R^4NH$$
 R^1
 R^2
 R^2
 R^2
 R^3R^4
Metal Free
 R^2
 R^3R^4

It was found that heating DABSO (a 1,4-diazabicyclo [2.2.2] octane bis(sulfur dioxide) adduct), a convenient, commercially available, solid source of SO₂, with 1a and piperidine in DMSO

Received: December 14, 2015 Published: January 15, 2016

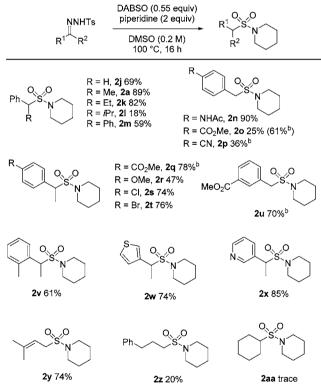
Organic Letters Letter

(dimethyl sulfoxide) at 100 °C in a sealed tube afforded direct formation of sulfonamide 2a in 80% yield (Table 1, entry 1).

Table 1. Deviation from Optimal Conditions

entry	variation from standard conditions	yield ^a
1	none	80%
2	DMF solvent	61%
3	toluene solvent	36%
4	MeCN solvent	35%
5	DCE solvent	0%
6	dioxane solvent	40%
7	1.2 equiv of piperidine	49%
8	DABCO (2 equiv)	73%
9	LiOtBu (2 equiv)	39%
10	Cs ₂ CO ₃ (2 equiv)	50%
11	SO ₂ (1 equiv) instead of DABSO	60%
12	open to atmosphere	26% ^b

 $[^]a$ NMR yields based on 2,6-dimethoxytoluene as internal standard. b Reaction was connected to a mineral oil bubbler.


DMF, dioxane, acetonitrile, and toluene provided products in lower yields whereas a reaction in dichloroethane provided no sulfonamide product (entries 2-6). The use of 2 equiv of piperidine provided a higher yield than 1.2 equiv (entry 7). As SO₂ is consumed during the reaction, DABSO generates DABCO (1,4- diazabicyclo[2.2.2] octane). Thus, the effect of excess DABCO was explored and a minimal reduction in yield was found (entry 8). Interestingly, this reaction does not require the addition of an inorganic base such as LiOtBu or Cs₂CO₃ which is typically used to initiate the decomposition of the N-tosylhydrazone to the diazo species. The addition of such bases actually lead to a decrease in yield (entries 9-10). Use of SO₂ instead of DABSO also provides the sulfonamide product albeit in a slightly lower yield (entry 11). Finally, all reported reactions were carried out in a sealed container to prevent loss of SO₂ gas from DABSO. Heating the reaction while open to the atmosphere provided significantly diminished vields (entry 12).

The substrate scope was next explored using different amines (Scheme 2). While cyclic secondary amines such as piperidine provided the highest yield, useful yields were obtained with isopropyl, tert-butyl, diethyl, and benzyl amine (2a–2d). Versatile functional handles such as alkene, alkyne, and hydroxyl groups were also tolerated, allowing for potential subsequent diversification (2f–2h). Aryl amines provided only trace products under these conditions (2i). Bulky secondary amines such as dibenzyl and diisopropylamine furnished no product (not shown).

Various *N*-tosylhydrazones of aromatic aldehydes and ketones are accommodated (Scheme 3, 2j-2k), though sterically congested hydrazones such as that derived from isobutyrophenone provided significantly lower yields (2l). Electronically diverse aryl hydrazones provided the sulfonamide products in moderate to good yields (2n-2r, 2u). Of note, it was empirically discovered that electron-deficient substrates provided higher yields in dioxane instead of DMSO.¹⁰ This method tolerated aryl chlorides, bromides, and ortho

Scheme 2. Substrate Scope in Amine

Scheme 3. Substrate Scope in Hydrazone^a

"Yields are for products isolated after chromatography. ^bReaction was performed in dioxane.

substitution (2s, 2t, 2v). Diaryl hydrazones (2m), thiazoles (2w), and pyridines (2x) were all accommodated. Good yields were obtained for the reaction of α,β -unsaturated hydrazones providing homovinyl sulfonamide, 2y, which could be leveraged for consequent reactions. Yields were significantly decreased for the hydrazones of alkyl aldehydes (2z) and completely repressed for dialkyl ketones (2aa). In these low yielding reactions, the starting hydrazone was largely consumed and

^aYields are for products isolated after chromatography.

Organic Letters Letter

significant amounts of tosyl piperidine were obtained. No elimination or carbene dimerization products were observed. However, the bulk of the mass balance is unaccounted for. Furthermore, in substrates bearing the ester moiety (i.e., 20, 2q), no amidation products were observed, suggesting that the amine may be sequestered during the reaction. Finally, a two-step, one-pot conversion of acetophenone to sulfonamide 2a was demonstrated to provide the product in comparable yields to that found in Scheme 2 (Scheme 4).

Scheme 4. One-Pot Conversion of Ketones to Sulfonamide

Additionally, alternate sources of SO_2 were viable for this reaction. Use of commonly available potassium metabisulfite and tetrabutylammonium bromide in place of DABSO provided sulfonamide 2a in good yield (Scheme 5).

Scheme 5. Potassium Metabisulfite as Sulfur Source

NNHTs
$$\begin{array}{c} K_2S_2O_5~(2~equiv)\\ TBABr~(1~equiv)\\ piperidine~(2~equiv)\\ \hline DMSO~(0.2~M)\\ 100~^{\circ}C,~16~h \end{array} \begin{array}{c} O\\ Ph\\ S\\ N\\ 2a~82\% \end{array}$$

To elucidate the mechanism, reactions were first carried out to probe for radical intermediates which have been reported for amine—SO₂ adducts.¹¹ Addition of TEMPO had little effect on yield, and no TEMPO adducts were observed (Scheme 6).

Scheme 6. Mechanistic Studies To Probe Existence of Radical Intermediates

"NMR yields based on 2,6 dimethoxytoluene as internal standard. ^bNo TEMPO adducts observed. ^cYield obtained after chromatography.

Addition of BHT (butylated hydroxytoluene) as a radical inhibitor did not suppress the reaction. Finally, use of phenyl cylcopropyl ketone provided the expected sulfonamide product (2ab) without ring opening of the cyclopropyl group. Combined, these observations suggest that radical processes are not operative during this transformation.

Several plausible nonradical mechanisms might be considered for the reported reaction (Scheme 7). Path A is based on

Scheme 7. Possible Mechanisms

previous reports from reactions of SO₂ with nucleophilic diazo species. In this pathway, the diazo species generated from the amine-initiated decomposition of the N-tosylhydrazone⁷ acts as a nucleophile in a reaction with SO₂, forming intermediate 3. Loss of N₂ gas then yields a sulfene (4) which reacts with piperidine to generate 2a. Alternatively in path B, the diazo intermediate may act as a base and be protonated to generate 5. Displacement with a nucleophilic amine-SO₂ complex would also provide 2a. ¹² Finally in path C, SO₂ may undergo an ene reaction with the N-tosylhydrazone to generate intermediate 6 which could decompose to sulfene 4. Similar ene reactivity with SO₂ has been reported previously with alkenes.⁵ Other mechanistic possibilities include formation of a free carbene which could react with SO₂ to generate sulfene 4 directly. This may be less likely, as no carbene side products (i.e., alkenes) were observed in the couplings. Further investigation is ongoing to elucidate the mechanism.

In conclusion, the first reported reaction between N-tosylhydrazones, SO_2 , and amines is shown to generate sulfonamides. Unsaturated hydrazones provide moderate to excellent yields, and the mild reaction conditions accommodate a variety of useful functional groups. Of note, this reaction neither requires nor benefits from the addition of commonly used transition metals such as Pd, Cu, or Rh, 10 and it adds to a growing list of metal-free coupling reactions with N-tosylhydrazones. Ultimately, this method affords a new route to sulfonamides from readily available ketones and aldehydes.

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.orglett.5b03545.

Experimental procedures and characterization data (PDF)

Organic Letters Letter

AUTHOR INFORMATION

Corresponding Author

*E-mail: andy.tsai@pfizer.com.

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

We thank Andrei Shavnya and Roger Ruggeri of Pfizer Worldwide Medicinal Chemistry, Groton CT, for valuable discussions.

REFERENCES

- (1) (a) Otten, H. J. Antimicrob. Chemother. 1986, 17, 689–690.
 (b) Noble, W. C. J. Antimicrob. Chemother. 1986, 17, 690–693.
 (c) Scozzafava, A.; Owa, T.; Mastrolorenzo, A.; Supuran, C. T. Curr. Med. Chem. 2003, 10, 925–953. (d) Smith, D. A.; Jones, R. M. Curr. Opin. Drug Discovery Dev. 2008, 11, 72–79.
- (2) For reviews on synthesis of sulfonyl chlorides and sulfonamides, see: (a) Furniss, B. S.; Hannaford, A. J.; Smith, P. W. G.; Tatchell, A. R. Vogel's Practical Organic Chemistry, 5th ed.; Wiley: New York, 1989. (b) Ashfaq, M.; Shah, S. S. A.; Najjam, T.; Shaheen, S.; Rivera, G. Mini-Rev. Org. Chem. 2013, 10, 160–170 and references therein.. For selected examples, see: (c) Bahrami, K.; Khodaei, M. M.; Soheilizad, M. J. Org. Chem. 2009, 74, 9287–9291. (d) Wright, S. W.; Hallstrom, K. N. J. Org. Chem. 2006, 71, 1080–1084. (e) Alapafuja, S. O.; Nikas, S. P.; Shukla, V. G.; Papanastasiou, I.; Makriyannis, A. Tetrahedron Lett. 2009, 50, 7028–7031.
- (3) For reviews on recent chemistry on SO₂ incorporation, see: (a) Deeming, A. S.; Emmett, E. J.; Richards-Taylor, C. S.; Willis, M. C. Synthesis **2014**, 46, 2701–2710. (b) Liu, G.; Fan, C.; Wu, J. Org. Biomol. Chem. **2015**, 13, 1592.
- (4) (a) DeBergh, J. R.; Niljianskul, N.; Buchwald, S. L. J. Am. Chem. Soc. 2013, 135, 10638-10641. (b) Johnson, M. J.; Bagley, S. W.; Mankad, N. P.; Bergman, R. G.; Mascitti, V.; Toste, F. D. Angew. Chem., Int. Ed. 2014, 53, 4404-4407. (c) Deeming, A. S.; Russell, C. J.; Willis, M. C. Angew. Chem., Int. Ed. 2016, 55, 747-750. (d) Malet-Sanz, L.; Madrzak, J.; Ley, S. V.; Baxendale, I. R. Org. Biomol. Chem. 2010, 8, 5324-5332. (e) Shavnya, A.; Coffey, S. B.; Smith, A. C.; Mascitti, V. Org. Lett. 2013, 15, 6226-6229. (f) Deeming, A. S.; Russell, C. J.; Willis, M. C. Angew. Chem., Int. Ed. 2015, 54, 1168-1171. (g) Woolven, H.; González-Rodríguez, C.; Marco, I.; Thompson, A. L.; Willis, M. C. Org. Lett. 2011, 13, 4876-4878. (h) Pandya, R.; Murashima, T.; Tedeschi, L.; Barrett, A. G. M. J. Org. Chem. 2003, 68, 8274-8276. For a related but distinct coupling with hydrazines, see: (i) Nguyen, B.; Emmett, E. J.; Willis, M. C. J. Am. Chem. Soc. 2010, 132, 16372-16373. (j) Emmett, E. J.; Richards-Taylor, C. S.; Nguyen, B.; Garcia-Rubia, A.; Hayter, B. R.; Willis, M. C. Org. Biomol. Chem. 2012, 10, 4007-4014. (k) Zheng, D.; An, Y.; Li, Z.; Wu, J. Angew. Chem., Int. Ed. 2014, 53, 2451-2454. (1) Ye, S.; Wu, J. Chem. Commun. 2012, 48, 7753-7755. (m) Ye, S.; Wu, J. Chem. Commun. 2012, 48, 10037-10039.
- (5) For ene reactions with SO₂ leading to alkyl sulfonamides, see:
 (a) Bouchez, L. C.; Dubbaka, S. R.; Turks, M.; Vogel, P. J. Org. Chem.
 2004, 69, 6413-6418. (b) Marković, D.; Volla, C. M. R.; Vogel, P.; Varela-Álvarez, A.; Sordo, J. A. Chem. Eur. J. 2010, 16, 5969-5975.
 (c) Vogel, P.; Turks, M.; Bouchez, L.; Marković, D.; Varela-Álvarez, A.; Sordo, J. A. Acc. Chem. Res. 2007, 40, 931-942.
- (6) (a) Staudinger, H.; Pfenninger, F. Ber. Dtsch. Chem. Ges. 1916, 49, 1941–1951. Purrington, S. T.; Wilder, P., Jr. J. Org. Chem. 1965, 30, 2070–2072. (b) Tokura, N.; Nagai, T.; Matsumura, S. J. Org. Chem. 1966, 31, 349–350. (c) Opitz, G. Angew. Chem., Int. Ed. Engl. 1967, 6, 107–123. (d) Quast, H.; Kees, F. Chem. Ber. 1981, 114, 787–801. (e) Sander, W.; Kirschfeld, A.; Halupka, M. J. Am. Chem. Soc. 1997, 119, 981–986.
- (7) For reviews of N-tosylhydrazones, see: (a) Barluenga, J.; Valdés. Angew. Chem., Int. Ed. 2011, 50, 7486–7500. (b) Fulton, J. R.; Aggarwal, V. K.; de Vicente, J. Eur. J. Org. Chem. 2005, 2005, 1479–

- 1492. (c) Shao, Z.; Zhang, H. Chem. Soc. Rev. 2012, 41, 560-572. For selected examples of diazo species generated from tosylhydrazones, see: (d) Bartrum, H. E.; Blakemore, D. C.; Moody, C. J.; Hayes, C. J. Chem. - Eur. J. 2011, 17, 9586-9589. (e) Bartrum, H. E.; Blakemore, D. C.; Moody, C. J.; Hayes, C. J. Tetrahedron 2013, 69, 2276-2282. (8) For other three component couplings with N-tosylhydrazones, see: (a) Xiong, W.; Qi, C.; He, H.; Ouyang, L.; Zhang, M.; Jiang, H. Angew. Chem., Int. Ed. 2015, 54, 3084-3087. (b) Zhang, Z.; Liu, Y.; Ling, L.; Li, Y.; Dong, Y.; Gong, M.; Zhao, X.; Zhang, Y.; Wang, J. J. Am. Chem. Soc. 2011, 133, 4330-4341. (c) Sun, S.; Yu, J.-T.; Jiang, Y.; Cheng, J. J. Org. Chem. 2015, 80, 2855-2860. (d) Zhou, F.; Ding, K.; Cai, Q. Chem. - Eur. J. 2011, 17, 12268-12271. (e) Rao, K. P.; Basak, A. K.; Raju, A.; Patil, V. S.; Reddy, K. Tetrahedron Lett. 2013, 54, 5510-5513. (f) Sha, Q.; Wei, Y.-Y. Org. Biomol. Chem. 2013, 11, 5615-5620. (g) Zhang, Z.; Liu, Y.; Gong, M.; Zhao, X.; Zhang, Y.; Wang, J. Angew. Chem., Int. Ed. 2010, 49, 1139-1142. (h) Dai, Q.; Jiang, Y.; Yu, J.-T.; Cheng, J. Chem. Commun. 2015, 51, 16645–16647. (9) (a) Santos, P. S.; Mello, M. T. S. J. Mol. Struct. 1988, 178, 121-133. (b) Martial, L.; Bischoff, L.; Qin, C. Org. Synth. 2013, 90, 301-305. (c) Nguyen, B.; Emmett, E. J.; Willis, M. C. J. Am. Chem. Soc.
- 2010, 132, 16372-16373.(10) See the Supporting Information for further reaction condition screens.
- (11) Eugène, F.; Langlois, B.; Laurent, E. J. Org. Chem. 1994, 59, 2599–2603.
- (12) Little has been reported on the reactivity of SO₂-amine complexes. Most studies have focused on their spectroscopic/physical characterization and stoichiometry. See: (a) Hill, A. E. J. Am. Chem. Soc. 1931, 53, 2598–2608. (b) Wong, M. W.; Wiberg, K. B. J. Am. Chem. Soc. 1992, 114, 7527–7535.